# THE THEORY OF QUALITY OF NONLINEAR CONTROL SYSTEMS 

## (K TEORII KACHESTVA NELINEINYKH REGULIRUEMYKH SISTEM)

```
PMM Vol.23, No.5, 1959, pp.971.974
                    CHZHAN SY-IN
                (Moscow-Shen'ian)
                (Received 12 February 1959)
```

The system considered here belongs to a large class of control systems and its motion is described by the differential equations of the form [1]

$$
\begin{array}{cc}
\dot{\eta}_{k}=\sum_{\alpha=1}^{m} b_{k \alpha} \eta_{\alpha}+n_{k h} \mu & (k=1, \ldots, m) \\
v^{2} \ddot{\mu}+w \dot{\mu}+s \mu=\dot{f}^{*}(\sigma), & \sigma=\sum_{\alpha=1}^{m} p_{\alpha} \eta_{\alpha}-r \mu \tag{1}
\end{array}
$$

Here $\eta_{k}$ are generalized coordinates of the controlled object, $b_{k a}$ are constants of the controlled object, $\mu$ is a coordinate of the controller, $n_{k}$ are constant parameters of the controller, $v, w, s$, generally speaking. are known functions of the variables $\mu, \mu, \sigma$, in special cases $s$, $v$ may be constants or zero, $\sigma$ may be a combined (summed) controlling pulse signal, $p_{a}, r$ are constants of the controller, $f *(\sigma)$ is nonlinear characteristic of the servomotor.

Let

$$
\begin{equation*}
\frac{1}{w} f^{*}(\sigma)=f(\sigma) \tag{2}
\end{equation*}
$$

In most control systems $f(\sigma)$ belongs to one of the two classes of the following functions

$$
\begin{equation*}
f(\sigma)=0 \text { for }|\sigma| \leqslant \sigma_{*}, \quad \sigma f(0)>0 \text { for }|\sigma|>\sigma_{*} \tag{3}
\end{equation*}
$$

Where $\sigma$, is some fixed non-negative number characterizing the dead zone of the controller. Sometimes $f(\sigma)$ satisfies the following conditions:

$$
\begin{equation*}
\sigma_{*}=0, \quad\left[\frac{d f(\sigma)}{d \sigma}\right]_{\sigma=0} \geqslant h>0, \quad \varphi(\sigma)=f(\sigma)-h(\sigma), \quad \sigma \varphi(\sigma)>0 \text { for } \sigma \neq 0 \tag{4}
\end{equation*}
$$

where $h$ is a given constant. In a special case one has

$$
\begin{equation*}
f(\sigma)=+Q \text { for } \sigma>0, \quad f(\sigma)=0 \text { for } \sigma=0, \quad f(\sigma)=-Q \text { for } \sigma<0 \tag{5}
\end{equation*}
$$

For the sake of simplicity let us restrict ourselves to the case when $v^{2}=0$, In addition, let us use the notation

$$
\begin{equation*}
\rho_{m+1}=\frac{s}{w} \tag{6}
\end{equation*}
$$

The system (1) shall assume the form

$$
\begin{equation*}
\dot{\eta}_{k}=\sum_{\alpha=1}^{m} b_{k \alpha} \eta_{\alpha}+n_{k} \mu(k=1, \ldots, m), \dot{\mu}=-p_{m+1^{\mu}}+f(\sigma), \quad \sigma=\sum_{\alpha=1}^{m} p_{\alpha} \eta_{\alpha}-r \mu \tag{7}
\end{equation*}
$$

Eliminating $\mu$ by means of the equation $\sigma=\Sigma p_{a} \eta_{a}-r \mu(r \neq 0)$ and using the following notation

$$
\begin{gather*}
b_{k \alpha}^{\circ}=b_{k \alpha}+\frac{n_{k} p_{\alpha}}{r} \quad(\alpha, k=1, \ldots, m) \\
\sum_{\alpha=1}^{m} p_{\alpha} b_{\alpha \beta}{ }^{\circ}+p_{m+1} p_{\beta}=p_{\beta}^{0}, \quad \sum_{\alpha=1}^{m} \frac{p_{\alpha} \eta_{\alpha}}{r}+p_{m+1}=p^{0} \tag{8}
\end{gather*}
$$

the system (7) may be reduced to the form

$$
\begin{equation*}
\dot{n}_{k}=\sum_{\alpha=1}^{m} b_{k \alpha}{ }^{\circ} \eta_{\alpha}-\frac{n_{k}}{r} \sigma \quad(k=1, \ldots, m), \quad \dot{\sigma}=\sum_{\alpha=1}^{m} p_{\alpha} \eta_{\alpha}-\rho^{\circ} \sigma-r f(\sigma) \tag{9}
\end{equation*}
$$

Let us introduce linear non-singular transformation

$$
\begin{equation*}
\chi_{s}=\sum_{\alpha=1}^{m} c_{\alpha}^{(g)} \eta_{\alpha} \quad(s=1, \ldots, n) \tag{10}
\end{equation*}
$$

and select coefficients $C_{a}{ }^{(s)}$ such that

$$
\begin{equation*}
-r_{\beta} C_{\beta}{ }^{(s)}=\sum_{\alpha=1}^{m} C_{\alpha}{ }^{(s)} b_{\alpha \beta}{ }^{\circ} \quad(\beta, s=1, \ldots, m), \quad-r=\sum_{\alpha=1}^{m} C_{\alpha}{ }^{(s)} n_{\alpha} \tag{11}
\end{equation*}
$$

where $r_{s}$ are roots of the following equation

$$
D^{\circ}(r)=\left\|\begin{array}{ll}
b_{11}{ }^{\circ}+r & b_{21}{ }^{\circ} \ldots b_{m 1}{ }^{\circ}  \tag{12}\\
b_{1 m}{ }^{\circ} & b_{2 m}{ }^{\circ} \ldots b_{m m}^{\circ}+r
\end{array}\right\|=0
$$

Then we reduce the system (9) to the canonic form

$$
\begin{equation*}
\dot{\chi}_{k}=-r_{k} \chi_{k}+\sigma \quad(k=1, \ldots, m), \quad \dot{\sigma}=\sum_{k=1}^{m} \beta_{k}{ }^{\circ} \chi_{k}-\rho^{\circ} \sigma-r f(\sigma) \tag{13}
\end{equation*}
$$

Here

$$
\begin{equation*}
\beta_{k}^{\circ}=\sum_{\alpha=1}^{n k} D_{k}^{\circ(\alpha)} p_{\alpha}^{\circ} \quad\left(n_{k}=\sum_{\alpha=1}^{m} D_{k}^{\circ}(k){\alpha_{\alpha}}_{\alpha} \quad(k=1, \ldots, m)\right. \tag{14}
\end{equation*}
$$

According to (8) and (12), the parameters of the controller $n_{k}, p_{a}, r$ may be selected such that for every $r$ the following will be valid

$$
\begin{equation*}
\operatorname{Re} r_{s}>0 \quad(s=1, \ldots, m) \tag{15}
\end{equation*}
$$

Let us consider a case when $D^{0}(r)=0$ has only simple roots. If all the roots are real, then the problem of quality will be solved by means of an equation of the form (13). If $D(r)=0$ has $s$ real roots $r_{i}(i=1$, $\ldots, s)$ and $2 k$ complex roots $\lambda_{i} \pm i \mu_{j}(j=s+1, \ldots, m-k)$ then instead of (13) the equations of the following form will be used

$$
\begin{gather*}
\dot{x_{i}}=-r_{i} \chi_{i}+\sigma(i=1, \ldots, s), \quad \dot{x}_{j}=-\lambda_{j} x_{j}+\mu_{j} \chi_{j+k}+2 \sigma \\
\dot{\chi}_{i+k}=-\lambda_{j} x_{j+k}-\mu_{j} \chi_{j} \quad(j=s+1, \ldots, m-k)  \tag{16}\\
\dot{\sigma}=\sum_{i=1}^{m-k} \beta_{i} \%_{i}+\sum_{j=s+1}^{m}\left(\beta_{j}{ }^{\circ} \chi_{j}+\beta_{j+k}{ }^{\circ 0} \chi_{j+k}\right)-p^{\circ} \circ-r f(\sigma)
\end{gather*}
$$

Here $\beta_{j}{ }^{00}, \beta_{j+k}{ }^{00}$ are real numbers.
In order to investigate transient response let us consider a sphere in the phase space of the variables $X_{k}(k=1, \ldots, m), \sigma$

$$
\begin{equation*}
R^{2}=\chi_{1}^{2}+\ldots+\chi_{m}^{2}+\sigma^{2} \tag{17}
\end{equation*}
$$

the radius of which at $t_{0}=0$ is equal to $R(0)$. Here all the parameters of the system are given and it is desired to find the time $t^{*}$ required for the radius $A(t)$ to decrease $e^{a}$ times, where $a$ is a given positive number, i.e.

$$
\begin{equation*}
\frac{R^{2}\left(t^{*}\right)}{R^{2}(0)}=e^{-2 a} \tag{18}
\end{equation*}
$$

The inverse problem would be to determine conditions for the system parameters such that $t^{*}$ would not exceed some specified $t^{*}$. Let us consider a function [2]

$$
\begin{equation*}
V=e^{\alpha t}\left(\chi_{1}^{2}+\ldots+x_{m}^{a}+o^{2}\right) \tag{19}
\end{equation*}
$$

Here $\alpha$ is a constant and is left undefined.
Let all the roots of $D^{0}(r)$ be simple and real. By virtue of (13) we have

$$
\begin{gather*}
\frac{d V}{d t}=\alpha e^{\alpha t}\left(\chi_{1}^{2}+\ldots+\chi_{m}^{2}+\sigma^{2}\right)+e^{\alpha t}\left[2 \chi_{1} \frac{d \chi_{1}}{d t}+\ldots+2 \chi_{m} \frac{d \chi_{m}}{d t}+2 \sigma \frac{d \sigma}{d t}\right]= \\
=e^{\alpha t}\left[\left(\alpha-2 r_{1}\right) x_{1}^{2}+\ldots+\left(\alpha-2 r_{m}\right) \chi_{m}^{2}+\left(\alpha-2 p^{0}\right) \sigma^{2}+2 \alpha \sum_{k=1}^{m}\left(1+\beta_{k}^{0}\right) \chi_{k}\right]+ \\
+e^{\alpha t}[-2 r \sigma f(\sigma)] \tag{20}
\end{gather*}
$$

Recalling that the function $f(\sigma)$ may have a form (3) or (4). Assuming (4) we obtain

$$
\begin{gather*}
\frac{d V}{d t}=e^{\alpha t}\left[\left(\alpha-2 r_{1}\right) \chi_{1}^{2}+\ldots+\left(\alpha-2 r_{m}\right) \chi_{m}^{2}+\left(\alpha-2 \rho^{\circ}-2 h r\right) \sigma^{2}+\right. \\
\left.+2 \sigma \sum_{k=1}^{m}\left(1+\beta_{k}\right) \chi_{k}\right]+e^{\alpha t}[-2 r \sigma \varphi(\sigma)] \tag{21}
\end{gather*}
$$

Let us choose a such that

$$
\begin{equation*}
d V / d t \leqslant 0 \tag{22}
\end{equation*}
$$

Let us note that $\sigma \phi(\sigma)>0$ and that the number $r$, in general, is positive. Therefore, if the quadratic form

$$
\begin{equation*}
H=\left(\alpha-2 r_{1}\right) x_{1}^{2}+\ldots+\left(\alpha-2 r_{m}\right) \chi_{m}^{2}+\left(\alpha-2 p^{0}-2 h r\right) \sigma^{2}+2 \sigma \sum_{k=1}^{m}\left(1+\beta_{k}\right) \chi_{k} \tag{23}
\end{equation*}
$$

is non-positive, we shall have the condition (22); the conditions of the non-negativness of the form $H$ are as follows:

$$
\Delta(\alpha)=\left|\begin{array}{ccccc}
2 r_{1}-\alpha & 0 & \cdots & 0 & -\left(1+\beta_{1}{ }^{\circ}\right)  \tag{24}\\
0 & 2 r_{2}-\alpha & \cdots & 0 & -\left(1+\beta_{2}\right) \\
\cdots & 0 & \cdots & 2 r_{m}-\alpha & -\left(1+\beta_{m}{ }^{\circ}\right) \\
0 & \left.0+\beta_{1}\right) & -\left(1+\beta_{2}{ }^{\circ}\right) \cdots & -\left(1+\beta_{m}\right) & 2\left(0^{\circ}+h r\right)-\alpha
\end{array}\right|
$$

all minors of this determinant must be non-negative, i.e.

$$
\begin{equation*}
A\binom{i_{1} i_{2} \ldots i_{p}}{i_{1} i_{2} \ldots i_{p}} \geqslant 0, \quad\binom{1 \leqslant i_{1}<i_{2}<\ldots<i_{p} \leqslant m}{p=1, \ldots, m)} \tag{25}
\end{equation*}
$$

Let us denote through $a^{*}$ such value of $a$ for which the conditions (25) are satisfied. Then from (22) we shall have

$$
\begin{equation*}
e^{\alpha^{*} t}\left(\chi_{1}^{2}+\ldots+\chi_{m}^{2}+\sigma^{2}\right) \leqslant e^{\alpha^{*} t_{3}}\left(\chi_{10}^{2}+\ldots+\chi_{m 0}^{2}+\sigma_{0}^{2}\right) \tag{26}
\end{equation*}
$$

From (26) and (18) we can find $t^{*}$ (assuming $t_{0}=0$ ):

$$
\begin{equation*}
e^{\alpha^{*} t^{*}} \leqslant e^{2 a}, \quad \text { or } \quad t^{*} \leqslant \frac{2 a}{\alpha^{*}} \tag{27}
\end{equation*}
$$

If instead of (25) we assame the following more rigid conditions

$$
\begin{equation*}
\Delta_{1}>0, \quad \Delta_{2}>0, \ldots, \quad \Delta_{m}=\Delta>0 \tag{28}
\end{equation*}
$$

then - $H$ will be positive. In this case $d V / d t<0$, and consequently

$$
\begin{equation*}
t^{*}<\frac{2 a}{\alpha^{* *}} \tag{29}
\end{equation*}
$$

Here $a^{* *}$ is a number ensuring fulfilment of (28). This number can be chosen as follows. Without losing generality let us assume that

$$
\begin{equation*}
r_{1}<r_{2}<\ldots<r_{m}<p^{0}+h r \tag{30}
\end{equation*}
$$

(of course, $\rho^{0}+h r$ may take on any intermediate values among the numbers $r_{1}, r_{2}, \ldots$. One can see that according to Sylvester all the roots of equation $\Delta(a)=0$ (24) are real. Furthermore, Letov [1] proved that the smallest root of equations $\Delta(\alpha)=0$ is less or equal to $2 r_{1}$, i.e. $a_{m / n} \leqslant 2 r_{1}$. From (24) and (28) we can see that this value will reach its limit for the conditions (28). Therefore, by virtue of (29), we shall have

$$
\begin{equation*}
t^{*}<\frac{2 a}{2 r_{1}}=\frac{a}{r_{1}} \tag{31}
\end{equation*}
$$

In case when $D(r)=0$ has complex roots, the analysis is carried out in an analogous fashion.

Example. Let us consider the problem of Bulgakov [3]. The equations of motion are as follows

$$
\begin{equation*}
T^{2} \ddot{\psi}+U \dot{\psi}+K \psi+\mu=0, \quad \dot{\mu}=f^{*}(\sigma), \quad \sigma=a \psi+E \dot{\psi}+G \ddot{\psi}-\frac{1}{l} \mu \tag{32}
\end{equation*}
$$

Let us introduce the notation

$$
\begin{gather*}
\psi=\eta_{11}, \quad \dot{\psi}=\sqrt{r} \eta_{2}, \quad \mu=i \xi, \quad t=\frac{\tau}{\sqrt{r}}, \quad p=\frac{U}{T^{2}}, \quad q=\frac{K}{T^{2}}, \\
r=\frac{i}{T^{2}}, \quad n_{2}=-1, \quad i=\frac{l T^{2}}{T^{2}+l G^{2}}, \quad f(\sigma)=\frac{1}{i \sqrt{r}} f^{*}(\sigma), \quad b_{21}=-\frac{q}{r}  \tag{33}\\
b_{22}=-\frac{p}{\sqrt{r}}, \quad p_{1}=a-q G^{2}, \quad p_{2}=\left(E-p G^{2}\right) \sqrt{r}, \quad p_{8}=-1
\end{gather*}
$$

Then (32) will assume the form

$$
\begin{equation*}
\dot{\eta}_{1}=\eta_{2}, \quad \dot{\eta}_{2}=b_{21} \eta_{1}+b_{32} \eta_{2}+n_{2} \xi, \quad \dot{\xi}=f(0), \quad \sigma=p_{1} n_{1}+p_{2} \eta_{2}-\xi \tag{34}
\end{equation*}
$$

A dot here denotes a derivative with respect to dimensionless time $r$. Eliminating $\xi$, we obtain

$$
\begin{aligned}
& \dot{\eta}_{1}=\eta_{8}, \quad \dot{\eta}_{2}=b_{21}{ }^{\circ} \eta_{1}+b_{22}{ }^{\circ} \eta_{2}+\sigma, \\
& \dot{\sigma}=p_{1}{ }^{\circ} \eta_{1}+p_{2}{ }^{\circ} \eta_{2}-p^{\circ} \sigma-f(\sigma)
\end{aligned}
$$

where

$$
b_{21}^{\circ}=b_{21}-p_{1}, \quad b_{22}^{\circ}=b_{22}-p_{2}, \quad p_{1}^{\circ}=b_{21}^{\circ} p_{2}, \quad p_{2}^{\circ}=p_{1}+b_{29}^{\circ} p_{8}, \quad p^{\circ}=-p_{2}
$$

In the case considered we have

$$
D(r)=\left|\begin{array}{cc}
r & b_{21}{ }^{\circ} \\
1 & r+b_{32}^{\circ}
\end{array}\right|=0
$$

the roots of this equation will be

$$
r_{1,2}=\frac{1}{2} \frac{U+l E}{\sqrt{l\left(T^{2}+l G^{2}\right)}} \pm \sqrt{\frac{1(U+l E)^{2}}{4 l\left(T^{2}+l G^{2}\right)}-\frac{K+a l}{l}}
$$

Here

$$
\frac{1}{4} \frac{(U+l E)^{2}}{l\left(T^{2}+l G^{2}\right)}<\frac{K+a l}{l}
$$

therefore the roots $r_{1}, r_{2}$ are conjugate complex. Let us write

$$
r_{1}=\lambda+i \mu, \quad r_{2}=\lambda-i \mu .
$$

By means of a linear transformation, equation (34) may be reduced to a canonic form

$$
\begin{gathered}
\dot{\chi}_{1}=-\lambda x_{1}+\mu \chi_{2}+2 \sigma, \quad \dot{\chi}_{2}=-\lambda \chi_{2}-\mu \chi_{1} \\
\dot{\sigma}=p_{2}^{0} \chi_{1}-\frac{1}{\mu}\left(p_{1}^{0}-\lambda p_{2}^{\circ}\right) \chi_{2}-p^{\circ} \sigma-f(\sigma)
\end{gathered}
$$

Let us consider the function $V=e^{\alpha t}\left(\chi_{1}^{2}+\chi_{2}^{2}+\sigma^{2}\right)$. In this case we have

$$
\Delta(\alpha)=\left|\begin{array}{ccc}
2 \lambda-\alpha & 0 & -\left(2+\beta_{1}{ }^{*}\right) \\
0 & 2 \lambda-\alpha & -\beta_{2}^{*} \\
-\left(2+\beta_{1}^{*}\right) & -\beta_{2}^{*} & 2\left(\rho^{\circ}+h\right)-\alpha
\end{array}\right|
$$

where

$$
p_{2}^{\circ}=\beta_{1}^{*}, \quad-\frac{1}{\mu}\left(p_{1}^{\circ}-\lambda p_{2}^{\circ}\right)=\beta_{9}^{*}
$$

If $\lambda<\left(\rho^{0}+h\right)$, then the smallest root of $\Delta(\alpha)=0$ will be $a_{m i n} \leqslant 2 \lambda$.
Let us determine time in accordance with (31):

$$
\tau^{*}<\frac{a}{\lambda}=\frac{2 a \sqrt{l\left(T^{2}+l G^{2}\right)}}{U+l E}
$$

But from (33) $\tau=t \sqrt{ }=$ so that

$$
t^{*}<\frac{2 a \sqrt{l\left(T^{2}+l G^{2}\right)}}{(U+l E) \sqrt{r}}=\frac{2 a\left(T^{2}+l G^{2}\right)}{U+l \varepsilon}
$$

This result is the same as the one obtained by letov for the same case.

## BIBLIOGRAPHY

1. Letov, A.M., Granichnye znacheniia naimen' shego kharakteristichnogo chisla odnogo klassa reguliruemykh sistem (Boundary values of the smallest characteristic number of a class of control systems). PMM Vol. 15, No. 5, 1951.
2. Chzhan Sy-in, Ob ustoichivosti dvizheniia na konechnom intervale vremeni (On stability of motion during a fixed interval of time). PMM Vol. 22, No. 2, 1959.
3. Letov, A.M., Ustoichivost' nelineinykh reguliruemyh sistem (Stability of Nonlinear Control Systens). GITTL, 1955.
