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The system considered here belongs to a large class of control systems 
and its motion is described by the differential equations of the form 

m 

(k = 1, . . ., m) 

Here rlK are generalized coordinates of the controlled object. bRa are 
constants of the controlled object, p is a coordinate of the controller, 

“k are constant parameters of the controller, Y* wo, S, generally speaking. 
are known functions of the variables ,u. cc, CT, in special cases S, Y may 
be constants or zero, u may be a combined (summed) controlling pulse 
signal, pa, r are constants of the controller, f*(o) is nonlinear charac- 
teristic of the servomotor. 

Let 

In most control systems 
following functions 

f(o) belongs to one of the two classes of the 

f(5)=0 for /a/&a*, (3) 

where CT is some fixed non-negative number characterizing the dead zone 
of the gontroller. Sometimes f(u) satisfies the following conditions: 

0, =o, df (5) 
[ 1 cl0 >h>O* 9. (4 = f (0) - h (4, 

a=0 
alp(o)>0 for a#0 (4) 

where h is a given constant. In a special case one has 

1387 



1388 Chzhon Sy- in 

f(a)=+Q for o>O, f(a)=0 for o=O, f(e) = - Q for a < 0 (5) 

For the sake of simplicity let us restrict ourselves to the case when 

V2 = 0, In addition, let us use the notation 

Pm+1 = $ (6) 

The system (1) shall assume the form 
m m 

cl=1 a=1 

Eliminating p by means of the equation 0 = x pa 7 n - rp (r f 0) 
using the following notation 

b ’ ka =bka+M?!jf-= (a, k = 1,. . ., m) 

m 

2 Po.bap’ + Pm+lPp = IJ~‘, 
m P? z -y +prn+l =p” 

a=1 a=1 

the system (‘7) may be reduced to the form 
m 

ik = 2 bkaOqa - ‘+ a (k = 1, . . ., m), * $:,.-.,~a --rf(Q) a= 

a-i a=1 

Let US introduce linear non-singular transformation 
m 

X8 = Xc!‘ha @=I,..., n) 

and select coefficients Co ( :;‘such that 

- r&(8) = 
i Ca(8)b,po (8, s=l,. . ., m), 
cl-1 

where rS are roots of the following equation 

I/ ho + r 
P(r)= b 

bsl’ . , . b,,” 

lrn’ b 2mo . . . bomm+r =’ ii 
Then we reduce the system (9) to the canonic form 

m 

);k=-‘kXk+a (k=l,. . ., m), ;r = 2 fikOXk - p% - rf (5) 

Here 
k; 

(?, = 5 .,,?‘)x$ (k = 1, . . ., m) 

a=1 

and 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

According to (8) and (12), the parameters of the controller nk, pa, r 

may be selected such that for every r the following will be valid 

Rer, >0 (S= 1,. . ., m) (15) 
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Let us consider a case when Do(r) = 0 has only simple roots. If all 
the roots are real, then the problem of quality will be solved by means 
of an equation of the form (13). If D(r) = 0 has s real roots rifi = 1, 

. ..I S) and 2k complex roots hi 2 ipj(j = 8 + 1. . . . , a~ - k) then instead 
of (13) the equations of the following form will be used 

XI=-T~XiJrU (i=l,, . .I S), Jj=-~jxjf~jXj~k +20 

ij+k = - ‘jXj+k - FjXj (j=q-I,..., m--Ecf W) 

a = $J Bi’7.i + Fk (PrXj + ?j+k”Xj+k) -P”Q -rf(a) 
i==l j=+l 

Here pjoO, Bj+ koo are real numbers. 

In order to investigate transient response let us consider a sphere in 
the phase space of the variables xk (k = 1, ,. . , n),o 

R2=Xp+...+X,‘d+a2 (17) 

the radius of which at to = 0 is equal to R(O), Here all the parameters 
of the system are given and it is desired to find the time t* required 
for the radius R(t) to decrease ea times, where a is a given positive 
number, i.e. 

The inverse problem would be to determine conditions for the system 
Parameters such that t* would not exceed some specified t*. Let us con- 
sider a function [2 1 

V = eat (~~2 + . . . + xma + 9) ($9) 

Here a is a constant and is left undefined. 

Let all the roots of D’(r) be simple and real. BY virtue of (13) we 
have 

dv _ = aeat (xl2 -f- . . 
dt 

= eat (a - 2~) xi2 Jr . . ~f(a-2r~)~~a+(“-2p”)~~‘f2u~(1+~k’)Xk]+ 

k==l 

f es’ f- Zruf (t~)f (20) 

Recalling that the function f(o) may have a form (3) or (4). Assuming 
(4) we obtain 

dv 
-&=e at t (a-2t~)xla-t-. . . + (a -2r,f xme + (a - 2p0--2hr) o* + 

+ 2s 5 (’ + pk) x,] + 8 [- h39 (c)] 
k=l 

(21) 
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Let US choose a such that 
dV/dt<O (22) 

Let US note that a$ (a) > 0 and that the number r, in general, is 
positive. Therefore, if the quadratic form 

H= (a - 2rl) y,12 -t . , . + (a - 2r,) X,,,’ + (a - 2P” - 2hr) 0% + 2a ; (1 + Bi;) y,k (23) 

k=l 

is non-positive, we shall have the condition (22); the conditions of the 
non-negativness of the form H are as follows: 

.&--a 0 . . . 0 - (1 + PI”) 

0 2ra---a . . . 0 -it i- Bn”) 

A(a)= +. . . . . . . . . . . . . . . . . 

0 2r,-a -$ + ;;o; 

- (1 + PI”) -(1: &“). . . - (1 + fi,“) 2 (p” + hr) - a 

all minors of this determinant must be non-negative, i.e. 

(24) 

“ji:i::::i;) 20, (‘“ii;~;;;;;,<ni,P~~) (25) 

Let us denote through a* such value of a for which the conditions (25) 
are satisfied. Then from (22) we shall have 

ea*’ (x? + . . . + xn; + aa} 52 ea’f~ (xlo2 -f- . . . + xmo2 +302) (3.3 

From (26) and (18) we can find t* (assuming t0 = 0): 

e ‘*‘*< eza, or .ae t” (2” (27) 

If instead of (25) we assune the following more rigid conditions 

AZ>% A,>O,, . ., A,=A>O (25) 

then -H will be positive. In this case dV/dt < 0,and consequently 

Here a** is a number ensuring fulfilment of (28). This number can be 
chosen as follows. Without losing generality let us assume that 

rl<rz<... <r,<p”+hr (30) 

(of course, p” + hr may take on any intermediate values among the numbers 

‘1’ ‘2’ . ..l. One can see that according to Sylvester all the roots of 
equation h (a ) = 0 (24) are real. Furthermore, Letov [ 1 1 proved that the 
smallest root of equations A (a ) = 0 is less or equal to 2ri, i.e. 

amin ( 2rl* From (24) and (28) we can see that this value will reach its 
limit for the conditions (28). Therefore, by virtue of (291. we shall 
have 
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(31) 

In case when D(F) = 0 has complex roots, the analysis is carried out 
in an analogous fashion. 

Exoaple. Let us consider the problem of Bulgakov [3 1. The equations 
of motion are as follows 

TSJ + u(i) + K$ + P = 0, ; = f’ (o), (32) 

Let us introduce the notation 

Q=rjll ;t = fillp. I” = iFI 

r=+*, a* 
u-2 ~1-1, i=_ 

T= -+ lG2 

bss = - - , 
-;1; 

pl=a--qGe, 

Then (32) will assume the form 

is= Jln, % = barri + baa%_+ &L 

A dot here denotes a derivative with respect to dimensionless time r. 
Eliminating [,we obtain 

;71= nil, 42 = be~“rlx + ban%, f us 
6 = p1”‘11+ Pn% - p*o - f (Q) 

where 
bar” = brl - ~1, bsa” = bzn - pa, PI” = bn’ps, ps” = pl + bBsops, p” = - pr 

In the case considered we have 

I) (rf I- I r hilo 
1 r + boaa 

=O 

the roots of this equation will be 

Here 

therefore the roots ‘1, Fz are conjugate complex, Let US write 

rI = A + it*, rs = h - ip. 

By means of a linear transformation, equation (34) may be reduced to 
a canonic form 

L==-xxr-l-t*xa+Zo, . x2=--xn-ErXl 

a=p"2XI- - ; (Pl"-- XPa”f xa - pea - f (0) 
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Let us consider the function V = eat(xl* +x2’ + 0’). In this case 
we have 

where 

If X < (p’ + h), then the smallest root of A (a) 3: 0 will be amin < 2X, 

Let us determine time in accordance with (311: 

But from (33) 7 = t v’ r so that 

te <2a v/1 (T3 + lC*) =;: .2a (P +lGa) 

F’ + 1.4 6- u + le 

This result is 
case. 

the same as the one obtained by Letov for the same 
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